

CERTIFICATION

AOAC Research Institute Performance Tested MethodsSM

Certificate No.

072105

The AOAC Research Institute hereby certifies the method known as:

PathogenDx Quant^x Fungal One Step

manufactured by

PathogenDx, Inc. 9375 E. Shea Blvd. Ste. 100 Scottsdale, AZ 85260 USA

This method has been evaluated in the AOAC Research Institute *Performance Tested Methods*SM Program and found to perform as stated in the applicability of the method. This certificate indicates an AOAC Research Institute Certification Mark License Agreement has been executed which authorizes the manufacturer to display the AOAC Research Institute *Performance Tested Methods* SM certification mark on the above-mentioned method for the period below. Renewal may be granted by the Expiration Date under the rules stated in the licensing agreement.

Issue Date

December 10, 2023

Scott Coates, Senior Director
Signature for AOAC Research Institute

Scott Coates

Expiration Date

December 31, 2024

AUTHORS

ORIGINAL VALIDATION: Benjamin A. Katchman, Peaches Ulrich, Shayla R Freeman, Melissa May, Kevin O'Brien, Rick Eggers, Fushi Wen and Mike

Hogan

MODIFICATION SEPTEMBER 2023: Laura Vold, Austin Rueda, Kevin O'Brien, Rick Eggers, Ralph Martel, Eric Lachance, and Mike Hogan

SUBMITTING COMPANY PathogenDx, Inc. 9375 E. Shea Blvd. Ste. 100 Scottsdale, AZ 85260 USA

METHOD NAME

PathogenDx Quant^x Fungal One Step

CATALOG NUMBER

QF-003

INDEPENDENT LABORATORY

Steadfast Analytical 21928 John R., Rd Hazel Park, MI 48030

al 63 Tr

Q Laboratories, Inc. 1930 Radcliff Dr. Cincinnati, OH 45204 SV Laboratories

631 E. Big Beaver Rd., Suite 211

Troy, MI 48083

APPLICABILITY OF METHOD

Analytes - Viable Yeasts and Molds.

Matrixes – Dried cannabis flower (delta 9-tetrahydrocannabionl >0.3%, 10g).

Performance claims

ORIGINAL VALIDATION – The study data were unable to find a statistically detectable difference from zero between the PathogenDx Quant^x Fungal One Step method and traditional plating on Dichloran Rose Bengal Chloramphenicol (DRBC) agar plates, due to insufficient sample size.

MODIFICATION SEPTEMBER 2023 – The study data were unable to find a statistically detectable difference from zero between the PathogenDx Quant^x Fungal One Step (manual or automated sample preparation) and the traditional cultural procedures outlined in AOAC *Standard Method Performance Requirements* (SMPR) 2021.009 (3).

REFERENCE METHOD

ERV Matrix Extension for dried cannabis flower compared to Dichloran Rose Bengal Chloramphenicol agar.

Standard Methods of Analysis (SMPRs®) for Viable Yeast and Mold Count enumeration in Cannabis and Cannabis Products (AOAC SMPR 2021.009) (3)

ORIGINAL CERTIFICATION APPROVAL DATE

July 30, 2021

CERTIFICATION RENEWAL RECORD

Renewed annually through December 2024.

METHOD MODIFICATION RECORD

- 1. February 2022 Level 1
- 2. October 2022 Level 1
- 3. September 2023 Level 2

SUMMARY OF MODIFICATION

- 1. Editorial changes.
- 2. Editorial changes to add caution statement added.
- Addition of automated sample preparation, Octa[™] AutoPrep Station and extend the range of method to include regulatory level at 100,000 cfu/g.

Under this AOAC *Performance Tested Methods*SM License Number, 072105 this method is distributed by: NONE

Under this AOAC $Performance\ Tested\ Methods^{\rm SM}$ License Number, 072105 this method is distributed as:

PRINCIPLE OF THE METHOD (1)

The PathogenDx Quant^X Fungal One Step assay is a quantitative test to detect the amount of Total Yeast/Mold (TYM) in dried cannabis flower specimens. The test involves extraction of nucleic acids from samples followed by Labeling PCR performed in a single reaction well. The PCR amplification product is then hybridized to a DNA microarray. Quantitation of fungal pathogens is determined by the conversion of fluorescence value of specific spots in the microarray when visualized in a plate reader to the corresponding colony forming unit (CFU). Quantitative results (presence/absence) are obtained at action limits established by cannabis regulatory agencies.

NONE

DISCUSSION OF THE VALIDATION STUDY (1)

In the matrix study, the Quant^x Fungal One Step assay successfully detected the target analyte from dried cannabis flower samples at the tested thresholds of detection. The POD statistical analysis in Table 10 indicated that the candidate method performance was not statistically different than that of the reference method for all contamination levels evaluated. Out of the 100 data points evaluated, 7 discrepant results were observed across mutiple dilutions evaluated (4 false positive and 3 false negative results). The Quant^x method has a high level of sensitivity and would be expected to detect DNA from low concentrations of the target organism that may not be able to be culturally confirmed. The delay in sample testing from original preparation of the materials until analysis may have resulted in the loss of viability of some species of organisms, making it harder to recover the organism on culture plates but still allowing the Quant^x method to detect the presence of the organisms. Testing in the matrix study was also performed at contamination levels as close to the dilution thresholds as possible. In the instances where no detection of the target occurred by the Quant^x method, but the organisms were recovered on agar plates may have resulted in concentrations right at the threshold and the distribution of the organism being slightly different in the aliquots used for the candidate method and those used for the reference method.

At the higher threshold, both the candidate and cultural confirmation method failed to detect the target analyte at the medium high and high levels of contamination. At these levels, a POD of 1.00 was expected. Testing for the validation study was delayed, and it is believed that the viability of the organisms may have been reduced at these levels resulting in less than optimal detection. Since this was observed with both the candidate method and culture confirmation it was not deemed to be an issue.

In the inclusivity and exclusivity study, the Quant^x method demonstrated a high level of specificity in detecting the 50 inclusive organisms and no detection of the 30 exclusive organisms (Table 8 and 9).

Table 8: R	esults for Inclusivity of the Quant ^x Method (1)			
No.	Organism	Source	Origin	Quant ^x Result
1	Alternaria alternata	ATCCº 66981	Arachis hypogaea	Positive
2	Arthrinium species (aureum)	ATCC 56042	Not Available	Positive
3	Aspergillus aculeatus	ATCC 56925	Grape	Positive
4	Aspergillus brasiliensis	ATCC 16404	Blueberry	Positive
5	Aspergillus caesiellus	ATCC 42693	Dried Chilies	Positive
6	Aspergillus flavus	ATCC 6943	Shoe Sole	Positive
7	Aspergillus fumigatus	QL ^b 021116.3	Flour Tortilla	Positive
8	Aspergillus niger	ATCC 6275	Not Available	Positive
9	Aspergillus oryzae	ATCC 10124	Not Available	Positive
10	Aspergillus terreus	ATCC 1012	Soil	Positive
11	Aureobasidium species (pullulans)	ATCC 15233	Painted wood	Positive
12	Botrytis cinerea	ATCC 11542	Azalea Flowers	Positive
13	Byssochlamys fulva	ATCC 24474	Canned Grape Juice	Positive
14	Candida albicans	ATCC 10231	Man with Bronchymycosis	Positive
15	Candida lusitaniae	QL 15166-2	Tea	Positive
16	Candida tropicalis	ATCC 13803	Tea	Positive
17	Chaetomium globosum	ATCC 6205	Stored Cotton	Positive
18	Cladosporium halotolerans	ATCC 58927	Air Sample	Positive
19	Cladosporium species (herbarum)	ATCC 58927	Air Sample	Positive
20	Cryptococcus laurentii	ATCC 18803	Palm Wine	Positive
21	Cryptococcus neoformans	ATCC 14116	Pigeon Nest	Positive
22	Curvularia lunata	ATCC 12017	N/A	Positive
23	Debaryomyces hansenii	ATCC 60978	Cheese and Milk	Positive
24	Dekkera bruxellensis	ATCC 200341	Kombucha	Positive

25	Fusarium oxysporum	QL 0567126A	Environmental Isolate	Positive
26	Fusarium proliferatum	QL 0567112.1C	Environmental Isolate	Positive
27	Fusarium solani	QL 345317.4B	Environmental Isoalte	Positive
28	Geotrichum candidum	ATCC 34614	Clotted Carrot	Positive
29	Geotrichum silvicola	QL 14282-1A	Milk	Positive
30	Kloeckera species	QL 15079-1A	Tea	Positive
31	Kluyveromyces lactis	ATCC 8563	Creamery	Positive
32	Mucor circinelloides	ATCC 24905	Rice Fermentations	Positive
33	Mucor hiemalis	ATCC 34334	Cow Dung	Positive
34	Paecilomyces species (marquandii)	ATCC 10525	Soil	Positive
35	Paecilomyces variotii	ATCC 1114	Leather	Positive
36	Penicillium chrysogenum	ATCC 10106	Cheese	Positive
37	Penicillium rubens	QL 14280-2A	Guar Gum	Positive
38	Penicillium venetum	ATCC 16025	Hyacinthus sp. Bulb	Positive
39	Phytophthora infestans	ATCC MYA 1113	Potato Tuber	Positive
40	Purpureocillium species (lilacinum)	ATCC 10114	Soil	Positive
41	Rhizopus oryzae	ATCC 9363	Soy Sauce	Positive
42	Rhizopus stolonifera	QL 14181-2A	Not Available	Positive
43	Rhodotorula mucilaginosa	ATCC 9449	N/A	Positive
44	Saccharomyces kudriavzevii	ATCC 2601	N/A	Positive
45	Scopulariopsis acremonium	ATCC 58636	Chicken House Soil	Positive
46	Talaromyces flavus	ATCC MYA 288	N/A	Positive
47	Talaromyces pinophilus (Penicillium pinophilum)	NRRL ^c 11797	Corn	Positive
48	Wickerhamomyces anomala	ATCC 2349	N/A	Positive
49	Yarrowia lipolytica	ATCC 9773	Not Available	Positive
50	Zygosaccharomyces bailii	ATCC 36947	Salad Dressing	Positive

^aMethod developers must test 50 total species to meet inclusivity requirements.

^bATCC = American Type Culture Collection, Manassas, VA.

^cQL = Q Laboratories, Inc., Cincinnati, OH.

 $[^]d$ NRRL = Agricultural Research Service Culture Collection, Peoria, IL.

able 9: Resu	ılts for Exclusivity of the Quant ^x Methoc	i (1)		
No.	Organism	Source	Origin	Quant ^x Result
1	Acinetobacter baumanii	ATCC ^a 19606	Urine	Non Detected
2	Aeromonas hydrophila	ATCC 49140	Clinical Isolate	Non Detected
3	Burkholderia cepacia	ATCC 25416	Plant Derived	Non Detected
4	Bacillus subtilis	ATCC 6633	Not Available	Non Detected
5	Citrobacter braakii	ATCC 43162	Clinical Isolate	Non Detected
6	Citrobacter farmeri	ATCC 51633	Human Feces	Non Detected
7	Edwardsiella tarda	ATCC 15947	Human Feces	Non Detected
8	Enterobacter aerogenes	ATCC 13048	Sputum	Non Detected
9	Enterobacter cloacae	ATCC 13047	Spinal Fluid	Non Detected
10	Erwinia amylovora	ATCC 51852	Plant	Non Detected
11	Escherichia coli	ATCC 8739	Feces	Non Detected
12	Escherichia coli O157:H7	ATCC 43895	Raw Hamburger	Non Detected
13	Escherichia hermanii	ATCC 33650	Mouse Brain	Non Detected
14	Escherichia vulneris	ATCC 29943	Human Wound	Non Detected
15	Hafnia alvei	ATCC 51815	Milk	Non Detected
16	Klebsiella oxytoca	ATCC 43165	Clinical Isolate	Non Detected
17	Klebsiella pneumonia	ATCC 11296	Not Available	Non Detected
18	Listeria monocytogenes	ATCC 7644	Human Isolate	Non Detected
19	Morganella morganii	ATCC 25829	Human	Non Detected
20	Pantoea agglomerans	ATCC 19552	Sewage	Non Detected
21	Proteus mirabilis	ATCC 7002	Urine	Non Detected
22	Pseudomonas aeruginosa	ATCC 27853	Clinical Isolate	Non Detected
23	Pseudomonas fluorescens	QL ^b 17041.3	Raw Milk	Non Detected
24	Pseudomonas gessardii	QL 17041.12	Raw Milk	Non Detected
25	Ralstonia pickettii	ATCC 27511	Clinical Isolate	Non Detected
26	Rahnella aquatilis	ATCC 55046	Soil	Non Detected
27	Salmonella Agona	ATCC 51957	Not Available	Non Detected
28	Stenotrophomonas maltophilia	ATCC 13637	Patient with mouth cancer	Non Detected
29	Staphylococcus aureus	ATCC 6538	Human Lesion	Non Detected
30	Serratia marcescens	ATCC 13880	Human	Non Detected

^aATCC = American Type Culture Collection, Manassas, VA.
^bQL = Q Laboratories, Inc., Cincinnati, OH.

		Lavel	Test		Qu	iant ^x Fungal Presump	•	Qu	ant ^x Fungal Confirm	•		
Matrix	Strain	Level (CFU/g) ^a	Threshold (CFU/g) ^b	N ^c	X ^d	POD_{CP}^e	95% CI	х	POD _{cc} ^f	95% CI	$dPOD_{CP}^g$	95% CI ^h
		320	≥ 1,000	5	0	0.00	0.00, 0.43	0	0.00	0.00, 0.43	0.00	-0.47, 0.47
		320	≥ 10,000	5	0	0.00	0.00, 0.43	0	0.00	0.00, 0.43	0.00	-0.47, 0.47
		890	≥ 1,000 ⁱ	20	9	0.45	0.26, 0.66	6	0.30	0.14, 0.52	0.15	-0.05, 0.35
Dried	Naturally Contaminated		≥ 10,000	20	0	0.00	0.00, 0.16	0	0.00	0.00, 0.16	0.00	-0.13, 0.13
Cannabis Flower		13000	≥ 1,000 ^{i,j}	20	18	0.90	0.70, 0.97	18	0.90	0.70, 0.97	0.00	-0.19, 0.19
		13000	≥ 10,000	20	0	0.00	0.00, 0.16	0	0.00	0.00, 0.16	-0.05	-0.13, 0.13
		100000	≥ 1,000	5	5	1.00	0.57, 1.00	5	1.00	0.57, 1.00	0.00	-0.47, 0.47
		100000	≥ 10,000 ^j	5	0	0.00	0.00, 0.43	2	0.40	0.12, 0.77	-0.40	-1.00, 0.21

^aFrom aerobic viable yeast and mold plate count (DRBC).

DISCUSSION OF MODIFICATION APPROVED SEPTEMBER 2023 (2)

The sample preparation extension to the automated Octa™AutoPrep Station demonstrated that Quant* Fungal successfully distinguished naturally contaminated cannabis at three defined action limits across five contamination levels whether the sample preparation was manual or automated. There was no statistically significant difference detected between the PathogenDx Quant* Fungal One Step presumptive results and the culture confirmation, regardless of methodology. The Quant* Fungal One Step assay when used in tandem with the Octa™AutoPrep System for sample processing reduced sample to answer time, plastic waste, and human error in comparison to the standard manual preparation. In a benchmarking experiment of 48 samples (data not shown) to compare automated sample preparation on the Octa AutoPrep Station against manual sample preparation, the Octa™ Tips replaced the use of spin columns, pipette tips and centrifuge tubes required for the manual procedure, resulting in less plastic consumable waste. The automated sample preparation for 48 samples was completed in 2.5 h versus 4.5 h for the manual procedure; automated preparation required under 0.5 h of operator hands-on work while the manual method required over 2.5 h of hands-on effort. This further reduction in time saves days' worth of incubation time required for the growth of fungal and yeast specimens using traditional plating methods.

^bBased on dilution and volume of sample tested. A positive result indicates contamination above the test threshold level.

^cN = Number of test portions.

 $^{^{}d}x$ = Number of positive test portions.

^ePOD_{CP} = Candidate method presumptive positive outcomes divided by the total number of trials.

^fPOD_{CC} = Candidate method confirmed positive outcomes divided by the total number of trials.

^gdPOD_{CP} = Difference between the candidate method presumptive result and candidate method confirmed result POD values.

^h95% CI = If the confidence interval of a dPOD does not contain zero, then the difference is statistically significant at the 5% level.

¹Results include presumptive positive test portions that confirmed negative

¹Results include presumptive negative test portions that confirmed positive

Matrix		Sample Prep Type	Level (CFU/g) ^a	Test		Qua	ant ^x Fungal I	Presumptive	Quant ^x Fungal Confirmed			_			
	Strain			Threshold (CFU/g)⁵	Nº	\mathbf{x}^{d}	POD_{CP}^{e}	95% CI	х	POD_CC^f	95% CI	$dPOD_{CP}^{g}$	95% CI ^h		
				≥1,000	5	0	0.00	0.00, 0.43	0	0.00	0.00, 0.43	0.00	-0.47, 0.47		
			323	≥10,000	5	0	0.00	0.00, 0.43	0	0.00	0.00, 0.43	0.00	-0.47, 0.47		
				≥100,000	5	0	0.00	0.00, 0.43	0	0.00	0.00, 0.43	0.00	-0.47, 0.47		
				≥1,000	20	14	0.70	0.48, 0.86	13	0.65	0.43, 0.82	0.05	-0.11, 0.21		
			1,246	≥10,000	20	0	0.00	0.00, 0.43	0	0.00	0.00, 0.43	0.00	-0.13, 0.13		
				≥100,000	20	0	0.00	0.00, 0.43	0	0.00	0.00, 0.43	0.00	-0.13, 0.13		
		Manual + ReliaPrep - -		≥1,000	20	20	1.00	0.84, 1.00	20	1.00	0.84, 1.00	0.00	-0.13, 0.13		
			9,715	≥10,000	20	9	0.45	0.26, 0.66	9	0.45	0.26, 0.66	0.00	-0.13, 0.13		
				≥100,000	20	0	0.00	0.00, 0.43	0	0.00	0.00, 0.43	0.00	-0.13, 0.13		
			67,750	≥1,000	20	20	1.00	0.84, 1.00	20	1.00	0.84, 1.00	0.00	-0.13, 0.13		
				≥10,000	20	20	1.00	0.84, 1.00	20	1.00	0.84, 1.00	0.00	-0.13, 0.13		
	Naturally Contaminated			≥100,000	20	4	0.20	0.08, 0.42	3	0.15	0.05, 0.36	0.05	-0.11, 0.21		
			5.04x10 ⁵	≥1,000	5	5	1.00	0.57, 1.00	5	1.00	0.57, 1.00	0.00	-0.47, 0.47		
Dried				≥10,000	5	5	1.00	0.57, 1.00	5	1.00	0.57, 1.00	0.00	-0.47, 0.47		
Cannabis				≥100,000	5	4	0.80	0.38, 1.00	3	0.60	0.23, 0.88	0.20	-0.36, 0.76		
Flower		ited	323	≥1,000	5	0	0.00	0.00, 0.43	0	0.00	0.00, 0.43	0.00	-0.47, 0.47		
(10g)				≥10,000	5	0	0.00	0.00, 0.43	0	0.00	0.00, 0.43	0.00	-0.47, 0.47		
				≥100,000	5	0	0.00	0.00, 0.43	0	0.00	0.00, 0.43	0.00	-0.47, 0.47		
				≥1,000	20	14	0.70	0.48, 0.86	13	0.65	0.43, 0.82	0.05	-0.11, 0.21		
					1,246	≥10,000	20	0	0.00	0.00, 0.43	0	0.00	0.00, 0.43	0.00	-0.13, 0.13
		Octa™ AutoPrep - -		≥100,000	20	0	0.00	0.00, 0.43	0	0.00	0.00, 0.43	0.00	-0.13, 0.13		
				≥1,000	20	20	1.00	0.84, 1.00	20	1.00	0.84, 1.00	0.00	-0.13, 0.13		
			9,715	≥10,000	20	9	0.45	0.26, 0.66	9	0.45	0.26, 0.66	0.00	-0.13, 0.13		
				≥100,000	20	0	0.00	0.00, 0.43	0	0.00	0.00, 0.43	0.00	-0.13, 0.13		
			67,750	≥1,000	20	20	1.00	0.84, 1.00	20	1.00	0.84, 1.00	0.00	-0.13, 0.13		
				≥10,000	20	20	1.00	0.84, 1.00	20	1.00	0.84, 1.00	0.00	-0.13, 0.13		
				≥100,000	20	4	0.20	0.08, 0.42	3	0.15	0.05, 0.36	0.05	-0.11, 0.21		
			<u>-</u>	≥1,000	5	5	1.00	0.57, 1.00	5	1.00	0.57, 1.00	0.00	-0.47, 0.47		
			5.04x10 ⁵	≥10,000	5	5	1.00	0.57, 1.00	5	1.00	0.57, 1.00	0.00	-0.47, 0.47		
				≥100,000	5	4	0.80	0.38, 1.00	3	0.60	0.23, 0.88	0.20	-0.36, 0.76		

^aFrom aerobic viable yeast and mold plate count (DRBC).

REFERENCES CITED

- 1. Katchman, B.A., Ulrich, P., Freeman, S.R., May, M., O'Brien, K., Eggers, R., Wen, F., and Hogan, M., Emergency Response Validation Study for the Pathogen Dx Quant^X Fungal One Step Assay for the Detection of Viable Yeasts and Molds in Cannabis Flower, AOAC *Performance Tested Methods*SM Emergency Response Validation certification number 072105.
- 2. Vold, L., Rueda, A., O'Brien, K., Eggers, R., Martel, R., Lachance, E., and Hogan, M., Validation of a Sample Preparation Extension for Quant^x Fungal One Step Assay for the Quantitative Estimation of Total Yeast and Mold in Cannabis Flower, AOAC *Performance Tested Methods*SM certification number 072105. Approved September 21. 2023.
- 3. Standard Methods of Analysis (SMPRs®) for Viable Yeast and Mold Count enumeration in Cannabis and Cannabis Products (AOAC SMPR 2021.009) https://www.aoac.org/wp-content/uploads/2021/06/SMPR-2021_009.pdf (Accessed March 2023)

^bBased on dilution and volume of sample tested. A positive result indicates contamination above the test threshold level.

^cN = Number of test portions.

 $^{^{}d}x$ = Number of positive test portions.

^ePOD_{CP} = Candidate method presumptive positive outcomes divided by the total number of trials.

^fPOD_{CC} = Candidate method confirmed positive outcomes divided by the total number of trials.

[§]dPOD_{CP} = Difference between the candidate method presumptive result and candidate method confirmed result POD values.

^h95% CI = If the confidence interval of a dPOD does not contain zero, then the difference is statistically significant at the 5% level.